本文共 2740 字,大约阅读时间需要 9 分钟。
给定平面上的n个点,找出最多有多少个点在同一条直线上。这是一个经典的几何问题,可以通过计算点的斜率来解决,但由于浮点数精度问题,通常会采用分数形式来处理斜率。
思路:以某个点为基础点,计算其他点与之连线的斜率。如果两个点的斜率相同,则说明它们在同一直线上。使用浮点数计算斜率,可能会因为精度问题导致错误,特别是当斜率非常接近时。
步骤:
优点:简单易懂,时间复杂度为O(n²)。
思路:将斜率转换为最简分数形式,避免浮点数精度问题。通过分子和分母的最简形式来唯一表示每条直线。
步骤:
优点:避免了浮点数精度问题,时间复杂度为O(n²)。
using System;using System.Collections.Generic;using System.Linq;public class Solution{ public int MaxPoints(int[][] points) { if (points.Length == 1) return 1; DictionarylineCount = new Dictionary (); List pointList = new List (); Dictionary pointRepeat = new Dictionary (); for (int i = 0; i < points.Length; i++) { string pointKey = $"{points[i][0]}_{points[i][1]}"; if (pointList.Contains(pointKey)) { if (pointRepeat.ContainsKey(pointKey)) pointRepeat[pointKey]++; else pointRepeat[pointKey] = 1; } else { pointList.Add(pointKey); } } int maxPoints = 1; Dictionary currentLine = new Dictionary (); int maxTemp = 1; for (int i = 0; i < points.Length; i++) { currentLine.Clear(); int tmp = 1; for (int j = i + 1; j < points.Length; j++) { if (points[i][0] == points[j][0] && points[i][1] == points[j][1]) { continue; } int x1 = points[i][0]; int y1 = points[i][1]; int x2 = points[j][0]; int y2 = points[j][1]; if (x1 == x2) { string key = $"v_{y1}_{y2}"; if (currentLine.ContainsKey(key)) { currentLine[key]++; } else { currentLine[key] = 1; } if (currentLine[key] + 1 > maxTemp) { maxTemp = currentLine[key] + 1; } } else { int up = y2 - y1; int down = x2 - x1; int gcd = GCD(down, up); int simplifiedUp = up / gcd; int simplifiedDown = down / gcd; string key = $"{simplifiedUp}_{simplifiedDown}"; if (currentLine.ContainsKey(key)) { currentLine[key]++; } else { currentLine[key] = 1; } if (currentLine[key] + 1 > maxTemp) { maxTemp = currentLine[key] + 1; } } } foreach (var kvp in currentLine) { if (kvp.Value > maxTemp) { maxTemp = kvp.Value; } } string pointKey = $"{points[i][0]}_{points[i][1]}"; if (pointRepeat.ContainsKey(pointKey)) { maxTemp += pointRepeat[pointKey]; } else { pointRepeat[pointKey] = 1; } if (maxTemp > maxPoints) { maxPoints = maxTemp; } } return maxPoints; } private static int GCD(int a, int b) { while (a != 0) { int temp = a; a = b % a; b = temp; } return b; }}
这种方法通过将斜率转换为最简分数形式,避免了浮点数精度问题,确保了计算的准确性。同时,代码结构清晰,易于维护和扩展。
转载地址:http://ufzzz.baihongyu.com/